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Abstract

The main result of this paper is the computation of the mean optimal symmetrical
interpolation points in the tetrahedron up to degree 9. This interpoation set has the

smallest Lebesgue constant known today.
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High quality polynomial interpolation of functions is essential in many applications [1] [7],
in particular, in the p-version of the Finite Element Method. However, very little is known
about the approximation accuracy of interpolation in the simplex in several dimensions. Of
particular concern are the two dimensional and three dimensional cases. We refer here to

the few literatures that discuss this problem [2] [3] [4] [6].

In this paper, we compute the mean optimal interpolation sets in the tetrahedron. The
main result in [3] is that in the interval and in the triangle, the mean optimal sets are close
to the optimal interpolation sets in the mean norm(the smallest Lebesgue constant sets). We
give the mean optimal sets in table 3 in this paper. In the literature, the most widely used
interpolation sets in the tetrahedron is the equally spaced point sets. The approximation
quality for equally spaced point sets is known to deteriorate considerably for high degree
interpolation. Bos [2] has proposed a set for arbitrary dimension up to degree 4. Aside from

these, We are unaware of any other high degree interpolation sets in the tetrahedron.

Interpolation in a simplex of dimensions more than three is still of interest even though it
is not considered in this paper. The general principle introduced in [3] can still be employed,
albeit in a more complicated fashion.

We use the same notation as is used in [3]. Let S® be the three dimensional simplex

in R®. Let P,(S%) be the space of polynomials of degree n in three variables. Then dim
P.(S3) = N, = < n;—B ) = g"—HM"THX"—JF?’) Let T" = (21, ,2n,), *; € S% be a set of

distinct points in 53, where n is the degree of interpolation. 7™ will be called the nodal set and

x; the nodal points. Furthermore let 7™ be the family of all nodal sets, or the set of admissible

nodes (see next section for discussion of admissible nodes) i.e., T" € 7". The interpolation
problem now reads: Given a continuous function in S, f € C(5?%) and the nodal set 7™, find
pn € P, such that p,(2;) = f(z;), z; € T"(S*),i = 1,---, N,. Let my(z),j = 1,--+, N, be
the basis functions of P,(5?), then p,(z;) = E;-V:"l ajmj(z;) = f(z;),1 <i < N,. This system
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of linear equations is uniquely solvable for all right hand sides if and only if the determinant
is nonzero. The determinant of the system is denoted by V.DM(T™). Assuming now that
VDM(T"?) # 0, we can construct the Lagrange coefficients Lf(x) € P,(5%),j =1,..N, as
basis of P,(S5%) with LT (z;) = é;5,1 < 1,5 < N,.. For f € C(S53), we have
N
Pulz) = ; flar) L (). (1)

Denote p,(t) = L7 f, then L7 is a linear projection operator which maps C(S®) onto P,(S?).

If no misunderstanding will occur, we sometimes omit the index n.

We equip P,(S5?) with a norm || - || and denote

L
1] = sup LezZlL @
70 | flloo
if |-l = lloo, we write ||[Lr]l = A(T). It is easy to show that:
N,
ANT) = max > |Lf (z)]. (3)
€5 =1

MT) is calied the Lebesgue constant of L7. In addition, we define
N,
NEnl = [ 3 ILL @) Pde, 4)
5% k=1

Now we are interested in the sets T; which minimizes ||Lr||s and T5 which minimizes
I{Lr)l2. T} is the optimal interpolation set. T is called the mean L? (or briefly mean)
optimal set. We are also interested in the set Ty par which maximizes |V DM]| and call it the

VDM set. The VDM set is sometimes used to approximate the optimal set, see [2].

Remark: Let f € C(S?), then ||f — L7 f|leo < (14 MT))infgep,s9) If — 9lloo, see [3].
Hence, the interpolation error is of the same order as the best approximation up to the

Lebesgue constant. Interpolation points with the smallest Lebesgue constant therefore leads

to the smallest interpolation error.




Figure 1: The standard tetrahedron.

From now on, S? is the standard tetrahedron shown in Fig. 1. We denote (z,y, 2) the

Cartesian coordinates.

We shall be interested in the degree n optimal interpolation set for the mean norm(or
the VDM determinant) in a restricted set 7 of the nodal points:
a. The set of nodal points is symmetrical with respect to all symmetries of the tetrahedron;
b. On each face of the tetrahedron, we use degree n optimal interpolation set for the mean

norm(or the VDM determinant) in the triangle.

Condition b. is based on the following consideration. When we approximate a function
in a domain partitioned into tetrahedrons, we require the resulting piecewise polynomial to
be continuous. We also want to have minimal error on each face. Condition b. is not a
serious impediment. Indeed in the triangle case, we computed the degree n optimal set T3 ;
for the mean norm under the constraint that the nodal points on the edges of the triangle
is the one dimensional degree n mean optimal set. The corresponding Lebesgue constant is

quite close to that of the actual mean norm optimal set 75,;. This is shown in Table 1.
Because finding optimal points 77 is much more difficult, we minimize ||(Lr)||2 and find
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Table 1: Lebesgue constant and the mean norm for the triangle optimal mean set T3, and

the constrained mean set Tiy... Note the square of the mean norm is normalized by the
trangle area.

n | M) AT3r) | HlI g M 1Lz 3
9 12 12 i) 19
3 3 30 30
3| 2.1114  2.1206 0.7404 0.7420
41 2.6920  2.6833 0.8196 0.8220
51 3.3010  3.2695 0.8837 0.8863
6| 3.7910  3.7736 0.9408 0.9434
7| 4.3908  4.3949 0.9964 0.9990
8| 5.0893  5.1106 1.0553 1.0578
91 59181  5.9456 1.1227 1.1252
10 { 7.0850  7.1140 1.2050 1.2076
11| 8.3383  8.3864 1.3110 1.3140
12| 8.6928  8.7384 1.4533 1.4572
13| 12.0464 12.1120 1.6508 1.6561

the optimal set 75 in the constrained family. More precisely we find a set which is an
approximation of a local minimum of |[{Lr)[». We also compute the maximum of [V DM|
subject to the same constraints. We point out that the tetrahedron VDM set TV} ,,, restricted
to a face of the tetrahedron is exactly the two dimensional triangle VDM set computed in
[3]. Therefore, constraint b. is automatically satisfied by the VDM set. This can be seen
by using the hierarchic shape functions in [7] as the basis functions m;(x). Hierarchic shape
functions for the tetrahedron are organized into four categories: the nodal shape functions,
the edge modes, the face modes and the interior modes. |V DM]| in the hierarchic shape
function basis is the product of |V DM]| for the edge modes, |V DM]| for the face modes
and [V DM| for the interior modes. Therefore, maximizing |V DM]| for the tetrahedron is

equivalent to maximizing |V DM]| for each edge, each face and the interior.

By symmetry, a nodal point inside the tetrahedron can be at the center of the tetra-
hedron, or on one of the four lines passing through a vertex and the center of the triangle

face opposite to that vertex, or on one of the three lines connecting the midpoints of two




nonintersecting edges, or on one of the six symmetry planes but on none of the aforemen-
tioned lines, or on none of the symmetry planes (this node is located inside one of the twenty
four subtetrahedrons bounded by the six symmetry planes). It corresponds to a point in a
singlet, or a quartet, or a sextet, or a twelve fold symmetrical point, or a twenty four fold
symmetrical point. We denote the number of these multiplets by ni(n; = 0 or 1), n4, ng,
n12, Nog. Since the total number of these multiplets equals the number of interpolating nodes

inside the tetrahedron, n; 4 4ng + 6ng + 12013 + 24ng, = =Ln=2(n=3) ";2 =

The integer solution for the above equation is nonunique when n > 6. Different integer
solutions correspond to different symmetry patterns of the nodal set. Each symmetry pattern
has a minimum mean norm, we want to find the smallest mean norm (the global minimum)

among these minima.

For the n-th degree equally spaced point set, the symmetry pattern will be denoted as
(ni%, ng?, ng’, ni%, nsi). It obviously satisfy the integer equation ni+4ns+6ng+12n124+24n94 =
M%M. Numerical evidence shows that the minimum for this symmetry is smaller
than the minima in other symmetry pattern cases. Therefore, we restrict ourselves to one
more constraint:

c. The integer pair (ny, n4, ng, n12, noq4) for the symmetrical pattern of the degree n optimal
set is (n1?, ny?, ng?, ni4, nsg ), the solution for the symmetrical pattern of the degree n equally

spaced point set.

In Table 3, we list the approximate optimal sets in the tetrahedron barycentric coordi-

nates: b_l:%(l—:c——\/%—iG), 1)2:%(1-%-:1:——\/%—#%), l@,:\%(y—%), by = /32

by + by + b3 + by = 1. We also list (n}?, ng?, ng’,nid, nsq) and the number of interpolation
points N,. Points with multi-fold symmetry are listed only once. Other points with the
same symmetry can be obtained by applying tetrahedron symmetries to the listed points,

i.e., by permuting barycentric coordinates by, b, b3, by.




Table 2: Lebesgue constant and the mean norm for the optimal mean set, the VDM set
and the equally spaced point set. Note the square of the mean norm is normalized by the
tetrahedron volume.

n | M3 MTypw) MIE) | =ILep)lls =Ly, M5 FI{Ls)5
2 2 2 2 1E is I8

35 35 35
3129339 29329  3.0200 0.6435 0.6437 0.6893
4| 41120  4.1534  4.8801 0.7669 0.7670 0.9329
5] 5.6158  5.9961  8.0937 0.8892 0.8941 1.2915
6| 7.3632  8.8898  13.6568 1.0237 1.0423 1.8721
71 9.3659  11.6425 23.3789 1.1895 1.2417 2.9157
8 112.3111 15.8340 40.5455 1.4165 1.5513 4.9854
90115.6857 22.3304 71.1521 1.7532 2.0984 9.4538

Neither T3 nor Tt} leads to the minimization of the Lebesgue constant. Nevertheless
based on the one dimensional and the triangle results, we expect that the Lebesgue constant
of T3 will not be significantly larger than the Lebesgue constant of T, and will be smaller
than the Lebesgue constant of 77} ,,,. In Table 2, we give the Lebesgue constants for the sets
T3 and Ty p,,. For comparison, we also list the Lebesgue constant for the equally spaced
point set 77, = {(b1 = %,()2 = %,bg = %,()4 = 717)70 <44,k li+j+k+1=n} Indeed,

T3 has a smaller Lebesgue constant than 77} ,,, and a much smaller Lebesgue constant than

that of T;,. The last three columns give the mean norms.

We have given in this paper the mean optimal set 73 in the tetrahedron. 73 has the
smallest Lebesgue constant known today. The other two interpolation sets are the equally

spaced point set T, and the VDM set T p,.




Table 3: Barycentric coordinates for the tetrahedron optimal mean set T5.

n

T
Nn

n

T4

724

})1

by

b3

by

2

10

20

35

56

84

120

0

0

0

0

1.0000000
0.5000000
1.0000000
-0.7251957
0.3333333
1.0000000
0.8306024
0.5000000
0.2208880
0.2500000
1.0000000
0.8866427
0.6431761
0.1525171
0.4168658
0.1823054
1.0000000
0.9194021
0.7349105
0.5000000
0.3333333
0.1097139
0.3157892
0.1357838
0.3559336
1.0000000
0.9398927
0.7957614
0.6042138
0.0817370
0.4494208
0.2663399
0.2447528
0.1046666
0.2936310
0.1141973

0.0000000
0.5000000
0.0000000
0.2748043
0.3333333
0.0000000
0.1693976
0.5000000
0.2208880
0.2500000
0.0000000
0.1133573
0.3568239
0.1525171
0.4168658
0.1823054
0.0000000
0.0805979
0.2650895
0.5000000
0.3333333
0.1097139
0.5586077
0.1357838
0.3559336
0.0000000
0.0601073
0.2042386
0.3957862
0.0817370
0.4494208
0.2663399
0.6584392
0.1046666
0.2936310
0.1141973

0.0000000
0.0000000
0.0000000
0.0000000
0.3333333
0.0000000
0.0000000
0.0000000
0.5582239
0.2500000
0.0600000
0.0000000
0.0000000
0.6949657
0.1662683
0.1823054
0.0000000
0.0000000
0.0000000
0.0000000
0.3333333
0.7805723
0.1256031
0.1357838
0.1440664
0.0000000
0.0000000
0.0000000
0.0000000
0.8365261
0.1011584
0.4673202
0.0968080
0.1046666
0.2936310
0.4885725

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.2500000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.4530838
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.5926485
0.1440664
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.6860001
0.1191069
0.2830329




n

R
Ny

3!

T4

g

12

7024

1)1

()2

bs

by

8

165

9 220

1

0

1

2

1

2

0

1.06000000
0.9533797
0.8375919
0.6801403
0.5000000
0.0627331
0.2153606
0.3891297
0.3657423
0.1942206
0.2500000
0.0834511
0.4060462
0.0927818
0.2432058
1.0000000
0.9626819
0.8672666
0.7361751
0.5815151
0.3333333
0.0493729
0.4658361
0.1769439
0.3020146
0.1575680
0.3261032
0.0682526
0.2123036
0.0774288
0.0781245
0.2049128
0.3552639

0.0000000
0.0466203
0.1624081
0.3198597
0.5000000
0.0627331
0.2153606
0.3891297
0.5524728
0.7294168
0.2500000
0.0834511
0.4060462
0.0927818
0.2432058
0.0000000
0.0373181
0.1327334
0.2638249
0.4184849
0.3333333
0.0493729
0.4658361
0.1769439
0.6309227
0.7808733
0.4887991
0.0682526
0.2123036
0.0774288
0.0781245
0.2049128
0.3552639

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.8745338
0.5692789
0.2217406
0.0817849
0.0763626
0.2500000
0.0834511
0.0939538
0.5844475
0.4157364
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.3333333
0.9012542
0.0683277
0.6461122
0.0670627
0.0615587
0.1850977
0.0682526
0.2123036
0.6543249
0.5016150
0.5083123
0.2073089

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.2500000
0.7496468
0.0939538
0.2299889
0.0978521
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.7952422
0.3630891
0.1908175
0.3421360
0.0818620
0.0821632
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